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Spatial nonparaxial correction of the ultrashort pulsed beam propagation in free space
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In this paper, a family of integral solutions representing ultrashort pulsed beam propagation in free space is
studied by using the comoving frame coordinates and the Fourier transformation for time variable in terms of
well-known paraxial approximation. The pulsed Gaussian-like beam solution is obtained as a special case of
the integral solution, where the pulsed Gaussian beam solution is included. Further, starting from the non-
paraxial pulsed beam propagation equation in the temporal-frequency domain and making use of the spatial
Fourier transform, the nonparaxial pulsed beam solution is derived based on the paraxial pulsed beam solution,
where the nonparaxiality is evaluated by a series of expansions.
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I. INTRODUCTION

The rapid advancement in laser technology in the past
decades has brought about the production of extremely s
laser pulses, containing only a few, even only one, cycle
optical oscillations, which led to many new questions. F
long laser pulse propagation, it is well known that the sca
and paraxial approximation of diffraction theory provides
successful description of the propagation of space modul
light waves without considering their temporal structu
@1–3#. For extremely short laser pulse propagation, howe
the diffraction of light waves with spatial and tempor
modulation has to be considered simultaneously@4#. Several
authors have theoretically discussed the propagation of
ultrashort pulses using a series of techniques, such as
scalar approximation, vector analysis, paraxial approxim
tion, slowly varying envelop approximations~SVEA!, and
complex analytical signal~CAS! theory.

One of the key features of the ultrashort pulsed be
solutions obtained under the scalar and paraxial approxi
tion is that the spatiotemporal coupling leads to substan
pulsed beam reshaping through diffraction even when s
pulses propagate in free space@5–12#. Owing to the math-
ematical simplicity of the Gaussian function, most of t
research was carried out based on the spatial Gaussian
tribution. This is a family of solutions called pulsed Gauss
beam ~PGB!, in which the spatiotemporal coupling occu
@10–13#. On the other hand, a method based on the C
representation of polychromatic light@1# has been applied to
analytically obtain a physical solution for an ultrasho
pulsed beam, which overcomes the spatial singularity du
SVEA when the pulse is extremely short@13#. The difference
between the CAS method and SVEA has been analyzed
viously @10–12#, and the propagation of half-cycle electr
magnetic pulses centered at terahertz frequencies in
space has been studied@5#. It is shown that@5# the temporal
pulse shape of an aperture half-cycle pulse retains muc
its unipolar character after traveling more than 20 times
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aperture dimensions, although it is significantly altered d
ing propagation.

Many other new phenomena have been observed w
some theoretical conclusions have been drawn, among w
the Gouy phase shift resulting in a pulse-to-pulse tempo
instability @14–18#, the far-field propagation demonstratin
common patterns of time-derivative behavior regardless
the initial spatiotemporal profiles@6,7#, and linear homoge-
neous nondispersive and dispersive medium have becom
subject of interest@19,20#. Starting from Maxwell’s equa-
tions, exact solutions have been obtained@14–18#, to de-
scribe the evolution of single-cycle pulsed beam, which
partially discovered by Ziolkowski@21# from the free-space
wave equation and by using the method of Hertz potenti
These solutions demonstrated that~i! the Gouy phase shift o
focused beams leads to temporal reshaping and polarity
versals of single-cycle terahertz pulses;~ii ! the real and
imaginary parts of the pulse beam solutions are related
Hilbert transform, which coincides with the CAS solution
@1#; ~iii ! these paraxial solutions are the natural spatiotem
ral modes of an open electromagnetic cavity. The differ
techniques have been applied, such as the well-kno
ABCD matrices of Gaussian beam optics@17#, and the simu-
lation. A family of space-time nonseparable analytic so
tions describing spatiotemporal dynamics of isodiffracti
single-cycle and few-cycle pulses with Hermite-Gauss
and Laguerre-Gaussian transverse profiles have been
sented, and the creation of ‘‘dark pulses’’ at certain tra
verse positions has been analyzed@17,22#. The properties of
single-cycle terahertz pulses propagating through a fo
were investigated experimentally~on-axis case! and numeri-
cally @18# and the pulse distortions of a focused single-cy
pulse were illustrated. In terms of the Gouy shift, t
changes in pulse shape from antisymmetric to symmetric
be understood, while major pulse distortions arise from d
fraction effects that can be precisely modeled by numer
solution of the time-domain diffraction integral@18#.

It is more difficult and complicated to derive the solutio
of the ultrashort pulsed beam by CAS than by SVE
whereas the solutions of SVEA are inconsistent with phy
cal significance. It has been pointed out@23# that the diffrac-
tion of few-cycle light pulses can be solved by means o
perturbation technique based on the SVEA solution and
:
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propagated field is expressed as a series of correction t
to the field obtained from diffraction laws for many-cyc
pulses. Mathematically, this method is similar to that p
posed by Laxet al. @24# and the above work is based on th
paraxial approximation. In this paper, we will consider no
paraxial corrections to the paraxial solutions of an ultrash
pulsed beam. This can be conducted by using a small dim
sionless parameter 1/kw0 ~herek is the wave number in free
space andw0 is the waist width of the beam! for correction
@24#, together with the use of a truncation operator to corr
the paraxial beam solutions@25,26#. A more general paraxia
integral solution of an ultrashort pulsed beam will be d
rived, by which we will give the pulsed Gaussian-like bea
solution, in which PGB is included. Then, the nonparax
solutions can be derived by using the Fourier transform te
nique, which is a correction to the integral solution of t
paraxial ultrashort pulsed beam.

The paper is organized as follows. In Sec. II, the
trashort pulsed beam propagation under paraxial approx
tion is reviewed, where the integral solution is obtained
making use of the Fourier transform for the reduced ti
variablet5t2z/c. Then we derive a family of solutions o
pulsed Gaussian-like beam, in which the PGB is included
Sec. III, by applying the Fourier transform for spatial coo
dinatesrW and the nonparaxial wave equation in the tempo
frequency domain, the nonparaxial correction to the para
pulsed beam solutions can be derived as a series of ex
sions. The paper concludes with a discussion in Sec. IV.

II. PARAXIAL PROPAGATION OF AN ULTRASHORT
PULSED BEAM

The free-space propagation of an electromagnetic puls
governed by the wave equation

S ¹22
1

c2

]2

]t2D E~rW,z,t !50, ~1!

whererW5êxx1êyy are the transverse coordinates andêx ,êy
are the unit vector in thex and y direction, respectively.
Adopting the comoving frame coordinates, i.e.,t5t2z/c
andz5z, and time Fourier transforming both sides of Eq.~1!
yields the nonparaxial wave equation in the tempor
frequency domain,

F¹'
2 1

]2

]z2
12ik~v!

]

]zGc~rW,z,v!50, ~2!

wherek5v/c is the wave number,¹'
2 5]2/]x21]2/]y2 is

the transverse Laplacian, and the time Fourier transform
the electric field is represented as

E~rW,z,t !5
1

A2p
E

2`

1`

c~rW,z,v!exp~2 ivt!dv. ~3!

By invoking the paraxial approximation in the tempora
frequency domain, i.e.,
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]z
c~rW,z,v!U!uk~v!c~rW,z,v!u,

~4!

U ]2

]z2
c~rW,z,v!U!Uk~v!

]

]z
c~rW,z,v!U,

which indicates that the paraxial approximation is satisfi
for each frequency (v) component, the paraxial propagatio
equation in the temporal-frequency domain reads

F¹'
2 12ik~v!

]

]zGc~rW,z,v!50. ~5!

Analogous to the derivation of the Fresnel diffraction int
gral, one can solve Eq.~5! in the temporal-frequency domai
and an integral solution for the transverse components ca
derived, i.e.,

c~rW,z,v!5
2 ik

2pzE2`

1`

c~rW8,0,v!expF ik

2z
~rW2rW8!2Gd2rW8.

~6!

Inversely time Fourier transforming both sides of Eq.~6!, the
integral solution for the ultrashort pulsed beam propagat
in free space yields

E~rW,z,t!5
1

A2pzc
E

2`

1` ]

]t8
E~rW8,0,t8!d2rW8, ~7!

wheret85t2(rW2rW8)2/2cz is the reduced time and

E~rW8,0,t8!5
1

A2p
E

2`

1`

Ẽ~rW8,v,0!exp~2 ivt8!dv ~8!

is the initial (z50) pulsed beam distribution. From Eq.~7!,
the pulsed-beam solution can be derived for the differ
initial condition and it can be found that the spatiotempo
coupling occurs generally, even though the spatial and t
poral variables might be separable initially. However, t
analytical solution for the paraxial beam can only be deriv
for some specific cases, such as Gaussian beam, Her
Gaussian beam, etc. Supposec(rW,v,z) is a Gaussian-like
beam, which satisfies Eqs.~5! and ~6!, i.e.,

c~rW,z,v!52
izR

q
expS ik

rW2

2q
DF~rW,q,v!P~v!, ~9!

whereq(v)5z2 izR(v) is theq parameter of the Gaussian
like beam,w0 is the waist radius,zR5k(v)w0

2/2 is the Ray-
leigh range, andP(v) is the complex representation of th
initial on-axis spectral distribution of the pulse, an
F(xW ,q,v) is related to the order of transverse mode for t
Gaussian-like beam. For anm, nth-order Hermite Gaussian
beam,
1-2
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F~rW,q,v!5S 2
q

q*
D (m1n)/2

HmSAzRk

qq*
xD

3HnSAzRk

qq*
yD , ~10!

where ‘‘*’’ stands for complex conjugate and for Gaussi
beam,F(rW,q,v)51. It is, however, very difficult to derive
the analytical solution ifzR is v-dependent. Nevertheles
since it is possible to controlzR and make itv-independent
experimentally,q(v) can be rendered independent ofv,
then

E~rW,t,z!5
2 izR

qA2p
F~rW,q,t8!* P~t8!, ~11!

where ‘‘*’’ denotes the Fourier convolution and

F~rW,q,t8!5
1

A2p
E

2`

1`

F~rW,q,v!exp~2 ivt8!dv,

~12!

and

P~t8!5
1

A2p
E

2`

1`

P~v!expF ivS rW2

2qc
2t D Gdv ~13!

is the complex representation of the pulse. In deriv
P(t8), the CAS theory@1,10–12# should be applied to avoid
the spatial singularity due to SVEA. Here,P(v)
52p(v)u(v),

p~v!5
1

A2p
E

2`

1`

p~ t !exp~2 ivt !dt,

u~v!5H 1, v.0

0, v<0

is the Heaviside step function,p(t)5A(t)cos(v0t1w) de-
notes the real representation of the initial on-axis pulse,A(t)
is a real function and the phasew is independent of timet for
simplicity, and v0 is the carrier frequency. Though th
higher-order correction to the SVEA solution@23# can be
applied to obtainP(t8) without using the CAS theory, it is
still preferable to use the CAS representation ofP(t8) to
overcome the spatial singularity. For a Gaussian beam,
the pulsed Gaussian beam can be obtained,

E~xW ,t,z!5
2 izR

q
P~t8!, ~14!

which coincides with that derived in several previous pap
@10–13#. Therefore, Eq.~11! gives rise to a family of pulsed
Gaussian-like beam solutions with different initial pulse d
tribution ~different P’s!.
05661
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III. NONPARAXIAL CORRECTION TO THE PULSED
BEAM SOLUTION

The nonparaxial correction to the paraxial pulsed be
solution given in Eqs.~7! and ~11! should be based on Eq
~2!, which is derived without the paraxial approximatio
First, the spatial Fourier transform of the wave is

c̃~ fW ,z,v!5
1

2 pE2`

1`

c~rW,z,v!exp~22p i fW•rW !d fW , ~15!

where fW5 f xêx1 f yêy is the spatial-frequency vector. The
substituting Eq.~15! into Eq. ~2! yields

~]z
212ik]z24p2fW2!c̃~ fW ,z,v!50, ~16!

which can be solved analytically. It is well known that th
electromagnetic field is an evanescent wave whenl2fW2>1.
Since the evanescent wave components propagate pe
dicularly to and decay exponentially along thez axis, their
influence can be ignored provided that the distance betw
the investigated transverse plane and the original transv
plane is more than several wavelengths. We will ignore
influence of the evanescent wave in the following. Therefo
the solution of Eq.~16! can be derived, i.e.,

c̃~ fW ,z,v!5exp@ ikz~A12l2fW221!#c̃~ fW ,0,v!. ~17!

Spatially Fourier transforming both sides of Eq.~5! yields
the paraxial pulsed beam solution in the spatial-tempo
frequency domain, i.e.,

c̃ (0)~ fW ,z,v!5c̃~ fW ,0,v!exp~2 ipl fW2z!. ~18!

It is evident that Eq.~18! is the zeroth-order term of Eq.~17!.
Also, Eq. ~18! gives Eq.~6! after the inverse spatial Fourie
transform. Since (12x)1/2512 1

2 x1(n52
` @(2n

23)!!/(2n)!! #xn, and exp(x)5(m50
` (xm/m!), and consider-

ing Eq. ~18!, Eq. ~17! can be expanded as

c̃~ fW ,z,v!5 )
n52

1`

(
m50

1`
1

m! F2 ikz
~2n23!!!

~2n!!!
3~l2fW2!nGm

3c̃ (0)~ fW ,z,v!. ~19!

Then substituting Eq.~19! into Eq.~15!, the ultrashort pulsed
beam solution in the spatial-temporal-frequency dom
yields

c~rW,z,v!5 )
n52

1`

T̂nc (0)~rW,z,v!, ~20!

where

T̂n5 (
m50

1`
~21!mn

m!k2mn F2 ikz
~2n23!!!

~2n!!! Gm

¹'
2mn

is av-dependent operator. Further, substituting Eq.~20! into
Eq. ~3!, one yields the exact solution of the ultrashort puls
beam,
1-3
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E~rW,z,t!5D̂mnF E
2`

1`

c (0)~rW,z,v!
exp~2 ivt!

km(2n21)
dvG ,

~21!

where

D̂mn5 )
n52

1`

(
m50

1`
~21!mn

m! F2 iz
~2n23!!!

~2n!!! Gm

¹'
2mn

is av-independent operator. So far, in principle, according
Eqs.~20! and~21!, one can obtain the exact solution for th
ultrashort pulsed beam propagation in free space, which
correction of the paraxial solutionc (0) in terms ofD̂mn .

Now consider the correction to the pulsed Gaussian-
beams. For the ultrashort laser pulses emitted by solid-s
mode-locked lasers,zR is independent ofv, hence

E~rW,z,t !5
2 izR

qA2p
Dmn@Fmn~rW,q,t8!* P~t8!#, ~22!

where ‘‘*’’ stands for the Fourier convolution and

F~xW ,q,m!mn5
1

A2p
E

2`

1`

km(122n)F~xW ,q,v!exp~2 ivm!dv,

andP(t8) is the complex representation of the pulse, wh
has been defined in Eq.~13!.

For a pulsed Gaussian beam,F(xW ,q,v)51, then

F~xW ,q,m!mn

5H d~m!, m50

2 iAp

2

~2 im!2mn2m21

~2mn2m21!!
sgn~m! otherwise,

~23!

where

sgn~x!5H 1, x.0

0, x50

21, x,0.

Then substituting Eq.~23! into Eq. ~22!, the nonparaxial
pulsed Gaussian beam solution can be derived for a defi
P(t8).

Next we give the magnitude analysis for th
(m,n)th-order terms in the correction. Denotingf max

5u fW umax as the maximum spatial frequency, it is evident th
l2f max

2 ,1. According to Eq.~19!, the magnitude function is
defined as

Fm,n5
1

m! F2 ikz
~2n23!!!

~2n!!!
~l2f max

2 !nGm

. ~24!

Since 1/m! ,1 and (2n23)!!/(2n)!! ,1, the following re-
lations hold for the samez:
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Hence, whenm5M andn5N are sufficiently large, Eq.~19!
can be approximated by

c̃~ fW ,z,v!5 )
n52

N

(
m50

M
1

m! F2 ikz
~2n23!!!

~2n!!!
3~l2fW2!nGm

3c̃ (0)~ fW ,z,v!, ~26!

and the difference between Eqs.~26! and~19! can be ignored
when the conditionFM ,N!1 is satisfied. Hence the non
paraxial pulsed beam solution can be expressed by a co
tion to the paraxial solution depicted by a finite series E
~20! and ~21!, in which

T̂n5 (
m50

M
~21!mn

m!k2mn F2 ikz
~2n23!!!

~2n!!! Gm

¹'
2mn ,

wheren52, . . . ,N, and

D̂mn5 )
n52

N

(
m50

M
~21!mn

m! F2 iz
~2n23!!!

~2n!!! Gm

¹'
2mn .

IV. DISCUSSION AND CONCLUSION

In summary, the comoving frame coordinates and
Fourier transform for time variables have been applied
obtain the nonparaxial pulsed beam propagation equatio
the temporal-frequency domain. Then the paraxial equa
can be derived in the temporal-frequency domain, which
the same form as that of beam propagation@1–3#. The inte-
gral solution for the ultrashort pulsed beam propagation w
derived, which generally represents the propagation of
ultrashort pulsed beam in free space. As an example,
pulsed Gaussian-like beam solution was given whenzR is
independent ofv, in which the complex representation of th
initial on-axis pulseP(t8) can be given by CAS theory
@1,10–12# or the correction method@23#, and the pulsed
Gaussian beam solution can be rederived.

By making use of the Fourier transform for spatial va
ables rW, and starting from the nonparaxial pulsed bea
propagation equation in the temporal-frequency domain,
solution for nonparaxial pulsed beam propagation is deri
as a correction to the paraxial solution, which is an infin
series containing the derivative operatorsT̂mn and D̂mn . In
particular, the nonparaxial pulsed Gaussian-like beam s
tion is given. Using magnitude analysis, it can be found t
the higher-order correction terms have fewer effects th
lower ones and hence the corrections can be made by a fi
series with the derivative operatorsT̂mn and D̂mn .
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