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Spatial nonparaxial correction of the ultrashort pulsed beam propagation in free space
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In this paper, a family of integral solutions representing ultrashort pulsed beam propagation in free space is
studied by using the comoving frame coordinates and the Fourier transformation for time variable in terms of
well-known paraxial approximation. The pulsed Gaussian-like beam solution is obtained as a special case of
the integral solution, where the pulsed Gaussian beam solution is included. Further, starting from the non-
paraxial pulsed beam propagation equation in the temporal-frequency domain and making use of the spatial
Fourier transform, the nonparaxial pulsed beam solution is derived based on the paraxial pulsed beam solution,
where the nonparaxiality is evaluated by a series of expansions.
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[. INTRODUCTION aperture dimensions, although it is significantly altered dur-
ing propagation.

The rapid advancement in laser technology in the past few Many other new phenomena have been observed while
decades has brought about the production of extremely shosbme theoretical conclusions have been drawn, among which
laser pulses, containing only a few, even only one, cycles ofhe Gouy phase shift resulting in a pulse-to-pulse temporal
optical oscillations, which led to many new questions. Forinstability [14—18, the far-field propagation demonstrating
long laser pulse propagation, it is well known that the scalacommon patterns of time-derivative behavior regardless of
and paraxial approximation of diffraction theory provides athe initial spatiotemporal profilel,7], and linear homoge-
successful description of the propagation of space modulatg@eous nondispersive and dispersive medium have become a
light waves without considering their temporal structuresubject of interesf{19,20. Starting from Maxwell's equa-
[1-3]. For extremely short laser pulse propagation, howeverions, exact solutions have been obtairjéd-18, to de-
the diffraction of light waves with spatial and temporal Scribe the evolution of single-cycle pulsed beam, which are
modulation has to be considered simultaneo{idly Several ~ Partially discovered by ZiolkowskKi21] from the free-space
authors have theoretically discussed the propagation of th&@ve equation and by using the method of Hertz potentials.

ultrashort pulses using a series of techniques, such as ﬂ?@ese solutions demonstrated thiathe Gouy phase shift of

scalar approximation, vector analysis, paraxial approxima-ocused beams leads to temporal reshaping and polarity re-

: . L versals of single-cycle terahertz pulsd€g;) the real and
tion, slowly varying envelop approximatiolSVEA), and . . ]
complex analytical signaiCAS) theory. imaginary parts of the pulse beam solutions are related by

o f the kev feat f the ultrashort pulsed b Hilbert transform, which coincides with the CAS solutions
ne of Ine key features ot the uftrashort puised bea 1]; (iii) these paraxial solutions are the natural spatiotempo-
solutions obtained under the scalar and paraxial approxim

S . i “%al modes of an open electromagnetic cavity. The different
tion is that the spatiotemporal coupling leads to SUbSta”t'atlechniques have been applied, such as the well-known
pulsed beam reshaping through diffraction even when SUCRgcp matrices of Gaussian beam optjds7], and the simu-

pulses propagate in free spgce-12]. Owing to the math- |ation. A family of space-time nonseparable analytic solu-
ematical simplicity of the Gaussian function, most of thetijons describing spatiotemporal dynamics of isodiffracting
research was carried out based on the spatial Gaussian di§ingle-cycle and few-cycle pulses with Hermite-Gaussian
tribution. This is a family of solutions called pulsed Gaussianand Laguerre-Gaussian transverse profiles have been pre-
beam (PGB), in which the spatiotemporal coupling occurs sented, and the creation of “dark pulses” at certain trans-
[10—13. On the other hand, a method based on the CASerse positions has been analy1&@,22. The properties of
representation of polychromatic light] has been applied to single-cycle terahertz pulses propagating through a focus
analytically obtain a physical solution for an ultrashort were investigated experimentalign-axis casgand numeri-
pulsed beam, which overcomes the spatial singularity due toally [18] and the pulse distortions of a focused single-cycle
SVEA when the pulse is extremely shftB]. The difference pulse were illustrated. In terms of the Gouy shift, the
between the CAS method and SVEA has been analyzed prehanges in pulse shape from antisymmetric to symmetric can
viously [10-12, and the propagation of half-cycle electro- be understood, while major pulse distortions arise from dif-
magnetic pulses centered at terahertz frequencies in frefeaction effects that can be precisely modeled by numerical
space has been studifg]. It is shown tha{5] the temporal solution of the time-domain diffraction integrgl8].
pulse shape of an aperture half-cycle pulse retains much of It is more difficult and complicated to derive the solutions
its unipolar character after traveling more than 20 times thef the ultrashort pulsed beam by CAS than by SVEA,
whereas the solutions of SVEA are inconsistent with physi-
cal significance. It has been pointed 28] that the diffrac-
*Author to whom correspondence should be addressed. FAXtion of few-cycle light pulses can be solved by means of a
+86-20-8521-1603. Email address: hguo@scnu.edu.cn perturbation technique based on the SVEA solution and the
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propagated field is expressed as a series of correction terms J .

to the field obtained from diffraction laws for many-cycle ’Elﬂ(fl,w)
pulses. Mathematically, this method is similar to that pro-
posed by Laxet al.[24] and the above work is based on the
paraxial approximation. In this paper, we will consider non-
paraxial corrections to the paraxial solutions of an ultrashort
pulsed beam. This can be conducted by using a small dimen-

sionless parameterKkify, (herek is the wave number in free \pich indicates that the paraxial approximation is satisfied

space andv, is the waist width of the beanfor correction ¢4 6ach frequencyd) component, the paraxial propagation
[24], together with the use of a truncation operator to Correclequation in the temporal-frequency domain reads

the paraxial beam solutiorf25,26. A more general paraxial
integral solution of an ultrashort pulsed beam will be de-
rived, by which we will give the pulsed Gaussian-like beam
solution, in which PGB is included. Then, the nonparaxial

solutions can be derived by using the Fourier transform tech- o ) o

paraxial ultrashort pulsed beam. gral, one can solve E@5) in the temporal-frequency domain
The paper is organized as follows. In Sec. II, the ul-and an integral solution for the transverse components can be

trashort pulsed beam propagation under paraxial approximalerived, i.e.,
tion is reviewed, where the integral solution is obtained by

<|k(w)¥(r,z,0)|,

(4)
52

El//(F,Z,w) <

Jd .
k(@)= 97 ,2,0)

Vf+2ik(w)% W(r,z,0)=0. (5)

making use of the Fourier transform for the reduced time (7 z.0)= —ik [+ (7' 0w)ex K(F— 2l
variable r=t—z/c. Then we derive a family of solutions of yr.z,w)= 27z) o pir O 2z '
pulsed Gaussian-like beam, in which the PGB is included. In (6)

Sec. Ill, by applying the Fourier transform for spatial coor-

dinatesr and the nonparaxial wave equation in the temporalinversely time Fourier transforming both sides of &), the
frequency domain, the nonparaxial correction to the paraxiaintegral solution for the ultrashort pulsed beam propagation
pulsed beam solutions can be derived as a series of expaimfree space yields

sions. The paper concludes with a discussion in Sec. IV.

- 1 te g - -
— - ’ ’ 2.1
Il. PARAXIAL PROPAGATION OF AN ULTRASHORT E(r.z,7)= [_ZWZCf—w S B0, (@)

PULSED BEAM

The free-space propagation of an electromagnetic pulse ighere ' = 7— (r —r')2/2cz is the reduced time and
governed by the wave equation
1 +

2 gl N =i i ’
(VZ_ia_> £ 20=0, W E(r’,0,7") ). E(r',0,0exp —iwr )do (8)
c? gt?

.. . o is the initial (z=0) pulsed beam distribution. From E(Y),
wherer =e,x+e,y are the transverse coordinates @de,  the pulsed-beam solution can be derived for the different
are the unit vector in thex andy direction, respectively. initial condition and it can be found that the spatiotemporal
Adopting the comoving frame coordinates, i.est—z/c  coupling occurs generally, even though the spatial and tem-
andz=z, and time Fourier transforming both sides of El). ~ poral variables might be separable initially. However, the
yields the nonparaxial wave equation in the temporal-analytical solution for the paraxial beam can only be derived
frequency domain, for some specific cases, such as Gaussian beam, Hermite-

Gaussian beam, etc. Suppo$(aF,w,z) is a Gaussian-like

&2 J R . . g :
Vf+ —2+2ik(w)— W(F2,0)=0, ) beam, which satisfies Eq&) and(6), i.e.,
9z 0z
- izg . r2\ .
wherek= w/c is the wave numbeiy? = 5%/ x>+ 3 y? is Yr.z,m)=- q 'kﬁ ®(r.g.0)P(w), 9
the transverse Laplacian, and the time Fourier transform of
the electric field is represented as whereq(w)=z—izgr(w) is theq parameter of the Gaussian-
. like beam,w, is the waist radiuszg=k(w)w3/2 is the Ray-
> _ e s . leigh range, and®(w) is the complex representation of the
E(r.z.t)= Vo) pirzoep-iondo. (3 initial on-axis spectral distribution of the pulse, and

®d(X,q,0) is related to the order of transverse mode for the
By invoking the paraxial approximation in the temporal- Gaussian-like beam. For an, nth-order Hermite Gaussian
frequency domain, i.e., beam,
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(m+n)/2
- Zrk
O, gw=| - —|  Ho o
* *
q aq
zZgk
XH, —y |, (10)
aq

where “*” stands for complex conjugate and for Gaussian

beam,(D(F,q,w)= 1. It is, however, very difficult to derive
the analytical solution ifzg is w-dependent. Nevertheless,

since it is possible to contra@g and make itw-independent
experimentally,q(w) can be rendered independent of
then

- _iZR -
E(r,7,2)= ——=®(r,q,7")*P(7'),
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[lI. NONPARAXIAL CORRECTION TO THE PULSED
BEAM SOLUTION

The nonparaxial correction to the paraxial pulsed beam
solution given in Eqs(7) and(11) should be based on Eq.
(2), which is derived without the paraxial approximation.
First, the spatial Fourier transform of the wave is

f,z,w)=%fj:¢(F,z,w)exq—27rif~F)df, (15)

where f=f,e,+f,e, is the spatial-frequency vector. Then
substituting Eq(15) into Eq. (2) yields

(92+ 2ikd,— 4w?F2)§(f,z,0) =0, (16)

(1))  which can be solved analytically. It is well known that the
qv2m P >
electromagnetic field is an evanescent wave whéff=1.
where “*” denotes the Fourier convolution and Since the evanescent wave components propagate perpen-
dicularly to and decay exponentially along thexis, their
o influence can be ignored provided that the distance between
d(r,q,7)= d(r,q,0)exp —ior)do, the investigated transverse plane and the original transverse
\/ — plane is more than several wavelengths. We will ignore the
(12 influence of the evanescent wave in the following. Therefore,
g the solution of Eq(16) can be derived, i.e.,
an
. U(f.z,0)=exikz(V1-N*F2=1)]i(f,0,0). (17)
+o0 ) r
P(r")= — \/— o P(w)ex;{l (ﬁ_T) de (13)  Spatially Fourier transforming both sides of E&) yields
the paraxial pulsed beam solution in the spatial-temporal-
is the complex representation of the pulse. In derivingfrequency domain, i.e.,

P(7"), the CAS theory1,10—-17 should be applied to avoid

the spatial singularity due to SVEA. HereP(w)
=2p(w) 6(w),
+ oo
p(w)= ¢__7Jw p(t)exp —iwt)dt,
1, 0>0
%)=10, w=0

is the Heaviside step functiom(t) =A(t)cosyt+¢) de-
notes the real representation of the initial on-axis puige)
is a real function and the phageis independent of timefor

POF,z,0)=9(f,0,0)exp( — i 7\ F22). (18)

It is evident that Eq(18) is the zeroth-order term of E¢L7).
Also, Eq.(18) gives Eq.(6) after the inverse spatial Fourier
transform. Since (EX)Y2=1-3x+=7_,[(2n
=3)11/(2n)!11]x", and expf)==,_o(X"/m!), and consider-
ing Eq.(18), Eq.(17) can be expanded as

oow 23 ™
U(f, Za))—H 2: i X
X O(f,z,w). (19

Then substituting Eq19) into Eq.(15), the ultrashort pulsed

simplicity, and wq is the carrier frequency. Though the peam solution in the spatial-temporal-frequency domain

higher-order correction to the SVEA solutid23] can be

applied to obtairP(7") without using the CAS theory, it is

still preferable to use the CAS representationR{fr') to

overcome the spatial singularity. For a Gaussian beam, then

the pulsed Gaussian beam can be obtained,

- 1ZR
E(X,7,2)= TP(T'), (14

yields
+ 00
p(r.z,0)=[] T, z,0), (20)
n=2
where
o (™ I ) L
" mikemn | et |

which coincides with that derived in several previous papers

[10-13. Therefore, Eq(11) gives rise to a family of pulsed

is a w-dependent operator. Further, substituting ) into

Gaussian-like beam solutions with different initial pulse dis-Eq. (3), one yields the exact solution of the ultrashort pulsed

tribution (different P’s).

beam,
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> ~ too > eX[i—ia)T) |Fm,n|<|Fm—l,n|1 |Fm,n|<|Fm,n—1|- (25)
E(T,Z,T):Dmnf l//(o)(r,Z,w)W |,
- k Hence, whem=M andn=N are sufficiently large, Eq19)
(21) can be approximated by
where N M
-~ - 1 (2n—=3) LM
o fo f,z,0)= — | —ikz—=—— X (\?f?)"
L o (D™ (@2n=3)nm v(f.z.0) nll mE:o m! amn X
Dmn=].—.[ 2 | -1z 2mi 1
A2 m=o M (2n!t X PO (f,z,w), (26)

is aw-independent operator. So far, in principle, according to . .
Egs.(20) and(21), one can obtain the exact solution for the and the difference between E86) and(19) can be ignored

Lo ..~ when the conditionFy, y<1 is satisfied. Hence the non-
ultrashort pulsed beam propagation in free space, which is Saraxial pulsed beam solution can be expressed by a correc-

; H H 0) ; D . . . . . .
correction of the paraxial solutiog® in terms ofDyn. — tion to the paraxial solution depicted by a finite series Egs.
Now consider the correction to the pulsed Gaussian-likg0) and(21), in which

beams. For the ultrashort laser pulses emitted by solid-state

- IS i M
mode-locked lasergy is independent oo, hence s 2 (—1)mn - Z(Zn_3)” mo
R —izg R " M=o mik2mn (2m!t s
E(r,zt)= —Dp{ ®ni(r,q,7)*P(7)], (22
qv2m m wheren=2, ... N, and
where “*” stands for the Fourier convolution and N Mo qymn —3ym
5 1] E( n™@n=u|m
n=2 m=o M (2n)!! -

N 1 +o R .
q)(xlqll‘l‘)mn:\/? C km(lizn)q)(xaqﬂl))exq_leu’)dwa
™ IV. DISCUSSION AND CONCLUSION

andP(7") is the complex representation of the pulse, which | summary, the comoving frame coordinates and the

has been defined in E¢L3). . Fourier transform for time variables have been applied to
For a pulsed Gaussian beaf(x,q,w)=1, then obtain the nonparaxial pulsed beam propagation equation in
R the temporal-frequency domain. Then the paraxial equation
D(X,q,4) mn can be derived in the temporal-frequency domain, which has
the same form as that of beam propagafibr3]. The inte-
o), m=0 gral solution for the ultrashort pulsed beam propagation was
= _\/;(_iM)Zmnml ] derived, which generally represents the propagation of an
-1 E(Zmn—Tl)!sgr(’“) otherwise, ultrashort pulsed beam in free space. As an example, the

pulsed Gaussian-like beam solution was given whgris
(23 independent ob, in which the complex representation of the
initial on-axis pulseP(7’) can be given by CAS theory
where [1,20-13 or the correction methodi23], and the pulsed
Gaussian beam solution can be rederived.

L x=0 By making use of the Fourier transform for spatial vari-
sgrix)=4 O, x=0 ablesr, and starting from the nonparaxial pulsed beam
-1, x<O0. propagation equation in the temporal-frequency domain, the

solution for nonparaxial pulsed beam propagation is derived
Then substituting Eq(23) into Eqg. (22), the nonparaxial as a correction to the paraxial solution, which is an infinite
puls’ed Gaussian beam solution can be derived for a definitgaries containing the derivative operatdts, and D ;. In
P(7). _ _ _ particular, the nonparaxial pulsed Gaussian-like beam solu-
Next we give the magnitude analysis for the tion js given. Using magnitude analysis, it can be found that
(m,n)th-order terms in the correction. DenotinGnax  the higher-order correction terms have fewer effects than
=|f| max @s the maximum spatial frequency, it is evident thatlower ones and hence the corrections can be made by a finite

)\Zfrznax<1. According to Eq(lg), the magnitude function is series with the derivative operato'i"%n and f)mn_
defined as
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